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Computer Resource Management 

• RM is the principal job of an operating system 

– Allocating resources to processes 

– Sharing resources among processes 

• RM meets user needs given system constraints 

– There are usually multiple processes and/or users 

– Their number and characteristics vary dynamically 

• Operating system R&D is close to nonexistent 

– Everyone seems to want the OS “out of the way” 

– This may be because it is generally “in the way” 

 



New Challenges for RM 

• Heterogeneous processors 

– Which and how many should an application use? 

• Quality of Service (QoS) requirements 

– How can response time requirements be met? 

• Energy efficiency given QoS requirements 

– Which feasible allocation is most efficient? 

• Cloud computing 

– How should cloud resources be managed? 

 



The Current State of Affairs  

• Client operating system RM uses heuristics 

– Many of the concepts date from the 1960’s 

– Hardware is adding more heuristics to the mix 

• Server operating system RM is manual 

– The “OS” is merely a set of virtual machines 

– Reallocation is seldom and done by humans 

• In either case, the consequence is erratic 
performance, wasted power, or both 



Improving Resource Management 

• We need a more principled approach to RM 
– One way: treat RM as an optimal control problem 

• PACORA is our implementation of this idea 
– PACORA stands for “Performance-Aware Convex 

Optimization for Resource Allocation” 

– It optimizes allocation of resources to minimize:  
• the cost of failing to meet service requirements plus 

• the cost of powering the allocated resources 

– subject to the total resources available 

• Because the convex optimization is fast, PACORA 
can continuously adapt to changes in workload 

 



A Convex Function 



Client PACORA 
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Who Does What 

• The OS models the latency functions 

– Non-Negative Least Squares (NNLS) in PACORA 

– It needs to know what latencies to measure 

• The user adjusts the penalty functions 

– A surrogate like the OS shell may do this 

• The OS continuously optimizes the cost 

  

 



Optimizing Power and Energy 

• Total system power can be limited by a convex 
resource constraint like r (wr p ap,r )  W 

• It can also be given its own penalty function 

– Assume the slack resources a0,r  are powered down 

– Let the “latency” for process 0 be total system power 
• It is convex (actually affine) in the slack resources a0,r 

– The penalty function can change with battery energy 
• Low-penalty work will slow when the battery is depleted   

Total Power = r powerr 
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Client PACORA Algorithms 

• Latency functions are modeled using non-negative 
least-squares (NNLS) which incrementally updates 
and downdates a QR factorization: 
– By rows, to add recent data and delete old or outlier 

data while preserving the rank of R 

– By columns, to remove negative parameters and 
restore them if and when they become positive  

• Objective functions are piecewise linear and can 
be optimized by an interior point method 
– Currently, we use Stephen Boyd’s ADMM algorithm 

which is well-suited to distributed control problems 

 



Cloud PACORA 

• Cloud services need RM for several reasons: 

– To adapt to workload changes (bandwidth) 

– To regulate responsiveness (latency) 

– To minimize costs, including power 

• Frequently, services will be pipelined 

– For example, if they are built from other services 

– The sub-services may or may not be co-located 

• Asynchronous pipelines can be hard to control 

– Ask a highway traffic engineer! 

 



An On-line Service Example 

SpeechA to TextA 

TextA to TextB 

 TextB to SpeechB 

The service must: 
1. Accommodate variations in the 

incoming load bandwidth 
2. Bound the total latency based on 

the Service Level Objective (SLO) 
3. Minimize operating cost 
4. Stay within available resources 

 
No problem, right? 
 



Accomodating Workload Variations 

• A pipeline stage comprises a set of instances 
– Stage bandwidth is the sum of instance bandwidths 
– The number of instances varies to handle the load   

• Bandwidth per instance will vary 
– From resource adjustments for latency, for example 
– The instance bandwidth needs to be modeled 

• Instead of instance bandwidth, we prefer its 
reciprocal: Valiant’s gap from the LogP model 

• Instance gaps, like latency,  will be (roughly) convex 
in each instance’s resource allocation 

 
See Valiant, L. G., “A Bridging Model for Parallel Computation”, Comm. ACM 33, 
No. 8, Aug. 1990, pp. 103–111. 



Incorporating Instances and Gaps 

The bandwidth B has units of 
items/second 

The gaps i(…ai,r…) have units 
of instance-seconds/item 

SpeechA to TextA 

TextA to TextB 

 TextB to SpeechB 
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gap1 = 1(…a1,r…)  

n1 = B∙gap1  

gap2 = 2(…a2,r…)  

n2 = B∙gap2  

gap3 = 3(…a3,r…)  

n3 = B∙gap3  



Queue Management 

• Instances should not use internal queues 

– If they do, how can one distinguish between 
computational latency and queueing delay? 

– Also, how are queueing blockades shrunk? 

• If shared external queues are used instead: 

– The sharing permits dynamic work distribution 

– The queue discipline can give priority to the oldest 
work, reducing the latency variance 

– Queueing delays can be kept small by ensuring 
that ni slightly exceeds B∙gapi for all i  

 

 

 



Shared External Queues 

• To reduce communication 
and improve scaling, the 
queues can be distributed 
and work stealing used 

• The shared queues can be 
placed in a shared address 
space, PGAS for example  

• Instances and queues can 
share cores and caches 
across stages for better 
streaming locality 

SpeechA to TextA 

TextA to TextB 
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Latency Optimization 

• A typical latency objective (SLO) specifies a 
time limit and the probability it is not exceeded 

– Resources per instance are adjusted to suit 

• One could build a latency function model for 
the pipeline using some kind of regression 

– This would permit inter-stage resource tradeoffs 

• Unfortunately, the usual kinds of regression 
describe the mean or median of the latency 

– What is needed here is quantile regression 

 



Quantile Regression 

• Given a sequence of resource allocations A and 
latencies t, quantile regression finds a model w 
that makes t < Aw with relative frequency p 

• Maintenance of the latency model w involves 
solving a sequence of linear programs 

•  Interior-point methods perform this well, even 
compared to traditional least-squares methods 

 

See Portnoy, S. and R. Koenker, “The Gaussian Hare and the Laplacian 

Tortoise”, Statistical Science 12, No. 4, Nov. 1997, pp. 279–296. 

 



Minimizing Cost 

• The objective function sums one penalty 
function per SLO plus one for power 

– SLO violations will usually incur penalties 

– The power penalty can resemble the client case 



Runtime Considerations 

• Virtual memory should be shared by all cores 

• The OS interface should be asynchronous 
– For cores that don’t (or can’t) run the OS 

– For cores that do, to retain their hardware threads 

– User-level task scheduling hides the asynchrony 

• Resource allocations will vary dynamically 
– Some applications may have difficulty handling 

this 

– Enterprise data bases are good at it 

• The runtime can supply rate-of-change data 
– This can be used to accelerate model adaptation 


